OFDM for Optical Access

Johannes von Hoyningen-Huene

and

Christian Ruprecht

Christian-Albrechts-Universität zu Kiel (CAU)
(University of Kiel)

Tutorial at OFC 2015
Th1H.1
Acknowledgements

Abdulamir Ali, Dennis Clausen, Annika Dochhan, Jochen Leibrich, Werner Rosenkranz

Christoph Kottke, Kai Habel

Yingkan Chen, Norbert Hanik

Sander Jansen, Michael Eiselt, Helmut Grießer

Daniel Fritzsche, Eric Weis, Dirk Breuer

For their slides and help:
Neda Cvijetic, Moshe Nazarathy, Roger Giddings and Yuki Yoshida
Optical Access Networks

Optical Access Network → Passive Optical Network (PON)

Goal: Increase data rate, reach, subscriber (ONU) count
Goals for Future Optical Access Networks

- Increase data rate
 - Introduce WDM, increase data rate per \(\lambda \)
- Increase subscriber count
 - WDM + multiple access (MA) techniques on each wavelength:
 - TDMA, CDMA, FDMA, OFDMA

Advantages of OFDMA:

- Flexibility in time and frequency domain
- Continuous operation (instead of burst operation)
- Efficient equalization

... however, there are challenges!
Aspects of OFDM in Optical Access Networks

Our Perspective on OFDM

High Data Rate

Sync. Aspects

Field Trial

Cost Reductions

Real-Time Experiments

Downstream + Upstream

WDM DSP
Outline

• Basics of Optical OFDM
• Principles of OFDM in PON: Downstream
• Principles of OFDM in PON: Upstream
 - Concepts with multiple optical sources
 - Concepts with single optical source
 - Multiple access
• Field Trial
• Further Advances of OFDM in Access
• Summary and Outlook
Basics of Optical OFDM: Introduction

Orthogonal Frequency Division Multiplexing (OFDM)

- **Parallel** transmission of narrow-band data streams
- Different (sub-)carrier frequencies f_0, \ldots, f_{N-1}
- **Partially overlapping** in frequency domain
- **Orthogonal**

![Diagram of OFDM Transmitter and Receiver](diagram.png)
Basics of Optical OFDM: Introduction

Orthogonal Frequency Division Multiplexing (OFDM)
- **Parallel** transmission of narrow-band data streams
- Different (sub-)carrier frequencies f_0, \ldots, f_{N-1}
- Partially overlapping in frequency domain
- Orthogonal

![Diagram of OFDM Transmitter and Receiver](image)
Basics of Optical OFDM: Introduction

Orthogonal Frequency Division Multiplexing (OFDM)

- **Parallel** transmission of **narrow-band** data streams
- **Different** (sub-)carrier frequencies \(f_0, \ldots, f_{N-1} \)
- **Partially overlapping** in frequency domain
- **Orthogonal**

Required:
- sync. frequency
- sync. timing
Basics of Optical OFDM:
All-Optical Realization

- All-Optical OFDM: Many optical modulators → Long-haul
Basics of Optical OFDM:
Analog-Electrical Realization

- **All-Optical OFDM:** Many optical modulators → Long-haul
- **Analog-Electrical OFDM:** Many analog-electrical modulators
Basics of Optical OFDM:
DSP-Based Realization

- **All-Optical OFDM:** Many optical modulators → Long-haul
- **Analog-Electrical OFDM:** Many analog-electrical modulators
- **DSP-based OFDM:** Many digital multipliers in DSP → Access, metro
Basics of Optical OFDM:
DSP-Based (IFFT) Realization

- **All-Optical OFDM**: Many optical modulators → Long-haul
- **Analog-Electrical OFDM**: Many analog-electrical modulators
- **DSP-based OFDM**: IFFT/FFT in DSP → Access, metro

![Diagram](Image)

OFDM-Transmitter
- S/P
- Data
- S/P
- P/S
- IFFT
- $d_0(i)$
- $d_k(i)$
- $d_{N-1}(i)$

Channel
- DAC
- ADC
- S/P
- FFT
- P/S

OFDM-Receiver
- S/P
- Data
Basics of Optical OFDM:
Advanced Elements of DSP-based OFDM

- **Mapping** for higher-order modulation formats
- **Synchronization** of OFDM-symbols required
- **CP** to avoid ISI
- Efficient **channel equalization**
- **Phase noise (PN)-compensation** (with coherent detection)
Basics of Optical OFDM:
Optical Modulation/Detection

Optical spectrum

IM-DD DSB

\[S_1^* \quad \quad \quad C \quad \quad \quad S_1 \]

IM-DD SSB

\[C \quad \quad \quad S_1 \]

IM-CO DSB

\[S_1^* \quad S_1 \]

Dispersion

\[|E|^2 \]

Electrical spectrum

IM-DD DSB

\[C^2 \quad S_1^* + S_1^2 \quad C \cdot S_1 + C \cdot S_1^* \]

IM-DD SSB

\[C^2 \quad S_1^2 \quad C \cdot S_1 \]

IM-CO DSB

\[LO^2 \quad LO \cdot S_1^* \quad LO \cdot S_1 \]

\[S_1^2 + S_1^{*2} \]

as in OFC’14 Short Course, OFC’12 Tutorial by Sander Jansen
Aspects of OFDM in Optical Access Networks

- High Data Rate
- Field Trial
- Cost Reductions
- Real-Time Experiments
- WDM
- Synchron. Aspects
- DSP
- +

Downstream
Upstream
Principles of OFDM in PON: Downstream (DS)

OFDM \rightarrow OFDMA (OFD Multiple Access)

Example with 4 ONUs

Groups of OFDM subcarriers assigned to ONU 1 … ONU 4

Downstream: Point-to-Multi-Point (P2MP)
OFDMA-DS: Optics

Detection

<table>
<thead>
<tr>
<th>Modulation</th>
<th>Direct Detection</th>
<th>Coherent Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>IM DSB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cost efficiency</td>
<td>Cost efficiency</td>
</tr>
<tr>
<td></td>
<td>+ +</td>
<td>– –</td>
</tr>
<tr>
<td></td>
<td>Sensitivity</td>
<td>Sensitivity</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>+ +</td>
</tr>
<tr>
<td></td>
<td>Reach</td>
<td>Reach</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>+ +</td>
</tr>
<tr>
<td>IM SSB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cost efficiency</td>
<td>Cost efficiency</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>– –</td>
</tr>
<tr>
<td></td>
<td>Sensitivity</td>
<td>Sensitivity</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>+ +</td>
</tr>
<tr>
<td></td>
<td>Reach</td>
<td>Reach</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+ +</td>
</tr>
</tbody>
</table>
OFDMA-DS: Concept with IM/DD

OFDM signal generation at OLT
- Orthogonal subcarrier groups → OFDMA possible

Electrical IQ modulation
- Real valued signal
- Frequency gap
- Intensity modulation and direct detection possible
OFDMA-DS: Effort Reduction *(Kiel, OFC’12)*

Concept

OFDM signal generation at OLT
- Orthogonal subcarrier groups → OFDMA possible

Processing of small subcarrier group at each ONU
- Reduction of ADC-speed, DSP-speed and DSP-complexity possible: Cost ↓
- Tunable electrical LO frequency → access every section of DS-spectrum
OFDMA-DS: Effort Reduction (Kiel, OFC’12)

Experimental Setup

Single Tx (OLT):
- Offline processing
- SSB-filtering to avoid power fading
- Full data rate: 12 Gb/s (net)
- 8-QAM mapping

Single Rx → Emulate multiple Rx (ONU):
- Different LO-frequencies
- Different reduction factors \(r \)
 - \(50 \text{ GS/s} \rightarrow 10 \text{ GS/s} , \ldots , 2.5 \text{ GS/s} \)
 - Full / half / quarter data rate

Diagram:

OLT

```
OLT
```

ONU

```
ONU
```

v. Hoyningen-Huene et al., OFC 2012, OW4B.
OFDMA-DS: Effort Reduction (Kiel, OFC’12)

Experimental Setup

Single Tx (OLT):
• Offline processing
• SSB-filtering to avoid power fading
• Full data rate: 12 Gb/s (net)
• 8-QAM mapping

Single Rx → Emulate multiple Rx (ONU):
• Different LO-frequencies
• Different reduction factors (r)
→ 50 GS/s → 10 GS/s , ... , 2.5 GS/s
→ Full / half / quarter data rate

Experimental Setup Diagram:

OLT

- Offline processing
- SSB-filtering to avoid power fading
- Full data rate: 12 Gb/s (net)
- 8-QAM mapping

ONU

- Different LO-frequencies
- Different reduction factors (r)

 disparity in processing rates: 50 GS/s → 10 GS/s , ... , 2.5 GS/s
- Full / half / quarter data rate
OFDMA-DS: Effort Reduction (Kiel, OFC’12)
Experimental Results

\(r = 1, \approx 12 \text{ Gb/s} \)

\(r = 2, \approx 6 \text{ Gb/s} \)

\(r = 4, \approx 3 \text{ Gb/s} \)

OSNR [dB]

log\(_{10}\)(BER)

Full bandwidth

Half bandwidth

Quarter bandwidth

f [GHz]
11.25 Gb/s real-time experiment with clock synchronization

Further P2P experiments with OFDM:
W. Yan et al. (Fujitsu), OFC 2014: 80 km, IM-DD, 100 Gb/s on single \(\lambda \), offline DSP
X. Xiao et al. (ZTE), OFC 2014 PDP, : 200 km, IQ-CO, 100 Gb/s on single \(\lambda \), real-time DSP

\(\rightarrow \) OFDM(A)-downstream in PON is feasible (P2P \(\rightarrow \) P2MP)
Aspects of OFDM in Optical Access Networks

High Data Rate
Sync. Aspects
Field Trial
Cost Reductions
Real-Time Experiments
WDM
DSP
Downstream + Upstream

Chair for Communications
Duplex of Downstream and Upstream

- Different fibers
 - Simple concept, relatively expensive

- Common fiber, different wavelengths
 - Separation with WDM components
 - Small interference of US and DS
 - NEC, CAU Kiel, etc.

- Common fiber, single wavelength
 - Remodulation of downlink signal
 - Technion, HHI Berlin, NEC, etc.
Upstream: Multi-Point-to-Point (MP2P)

OLT

ONU 1

ONU 2

ONU 3

ONU 4
Principles of OFDM in PON:
Upstream (US)

Upstream: Multi-Point-to-Point

Challenges:
• Carrier frequency offset
Principles of OFDM in PON: Upstream (US)

Upstream: Multi-Point-to-Point

Challenges:
• Carrier frequency offset
• Different path lengths
• Different states of polarization
• Different optical phase
OFDMA-US: Multiple Optical Sources
Different Wavelength, Direct Detection

Optical spectrum

Electrical spectrum

Desired parts

Intermodulation products
OFDMA-US: Multiple Optical Sources
Different Wavelength, Direct Detection

Optical spectrum

Electrical spectrum

- Insensitive to carrier frequency offset
- Insensitive to pol./phase mismatch
- Large optical bandwidth required
OFDMA-US: Multiple Optical Sources ($M-\lambda$)
Proof of Concept

ONU:
- DMLs
- 2 ONUs
- SC/N_{FFT}: 2x128 / 256
- Guard band

PON:
- Passive splitter 4:1
- Single fiber 20 km

OLT:
- DD
- OFDMA
- 10 Gb/s

Proof of concept:

D. Qian et al., ECOC 2007, paper 5.4.1 (NEC)
OFDMA-US: Multiple Optical Sources (M-λ)
Real-Time Experiment

ONU:
- DML & VCSEL
- DAC 4 GS/s
- N_{FFT}/SC/CP: 32/15/8
- Modulation: 64 QAM
- FPGA clock: 100 MHz

PON:
- Passive splitter 2:1
- Single fiber 26.4 km
- N_{FFT}/SC/CP: 32/15/8
- Modulation: 64 QAM
- FPGA clock: 100 MHz

OLT:
- DD 4 GS/s ADC
- OFDMA with DBA
- 11.25 Gb/s (gross)

Real-time experiment upstream:

X.Q. Jin et al., Opt Exp. 2011, (Bangor)
Aspects of OFDM in Optical Access Networks

- High Data Rate
- Sync. Aspects
- Field Trial
- Cost Reductions
- Real-Time Experiments
- WDM
- Downstream + Upstream

Chair for Communications
OFDMA-US: Single Optical Source (1-\(\lambda\))
Common Wavelength, Direct Detection

Optical spectrum

\[f_1, A \lambda_1 \]

Electrical spectrum

\[|E|^2 \]
OFDMA-US: Optical Tx/Rx
Common Wavelength, Direct Detection

- Equal carrier frequencies required → Synchronize optical carriers
 → Carrier distributed from OLT to all ONUs

Optical spectrum

\[f_i = \lambda_i \]

Electrical spectrum

\[|E|^2 \]

Carrier frequency error → Crosstalk
OFDMA-US: Single Optical Source (1-λ)
Common Wavelength, Direct Detection

- Equal carrier frequencies required
- Destructive beating of carriers possible
 → Loss of sub-signals
 → Direct detection not robust enough
OFDMA-US: Single Optical Source (1-λ)
Common Wavelength, Coherent Detection

- Equal carrier frequencies required
- Carrier suppression at transmitter
- Coherent detection of both polarizations
OFDMA-US: Single Optical Source (1-λ)

ONU Tx / OLT Rx

<table>
<thead>
<tr>
<th>Modulation ONU</th>
<th>Detection OLT</th>
<th>Direct Detection</th>
<th>Coherent Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensity Modulation
Local laser sources
Multiple wavelengths (M-λ)</td>
<td></td>
<td>Cost efficiency ++
Sensitivity –
WDM –
Groups: NEC, Bangor, Orange</td>
<td>Cost efficiency – (M⋅Rx)
Sensitivity ++
WDM –</td>
</tr>
<tr>
<td>Intensity Modulation
Central laser source
Common wavelength (1-λ)</td>
<td></td>
<td>Beating</td>
<td>Cost efficiency – (shared)
Sensitivity ++
Groups: NEC, Kiel, Accordance, HHI</td>
</tr>
<tr>
<td>Optical IQ-Modulator
Central laser source
Common wavelength (1-λ)</td>
<td></td>
<td>Beating</td>
<td>Cost efficiency – (shared)
Sensitivity ++
Higher SE
Groups: Technion</td>
</tr>
<tr>
<td>Optical IQ-Modulator
Local laser sources
Carrier synchronization (“1”-λ)</td>
<td></td>
<td>Beating</td>
<td>Cost efficiency – (M Lasers)
Sensitivity ++
Higher SE
Groups: Osaka</td>
</tr>
</tbody>
</table>
OFDMA-US: Single Optical Source (1-\(\lambda\))

Setup

1-\(\lambda\) US

- Distributed optical modulation (multiple transmitters) \(\rightarrow\) 1-\(\lambda\) US
 - Broadcast US-carrier from OLT / remodulation at ONU
 - Common wavelength \(\rightarrow\) Frequency offset problem solved

- Multiple access
 - Subcarriers
 - Time slots
OFDMA-US:
Multiple Access Schemes

<table>
<thead>
<tr>
<th>MA Schemes</th>
<th>Spectrum</th>
<th>Pro/Con</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0) OFDM-TDMA</td>
<td></td>
<td>Cost eff.: ++ (free running lasers)</td>
</tr>
<tr>
<td>(IM/DD IM/CO)</td>
<td></td>
<td>Timing: – sync/guard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rx/Tx: – burst mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Granularity: – (only time)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Groups: NTT</td>
</tr>
<tr>
<td>(1) OFDM-FDMA</td>
<td></td>
<td>Cost eff.: ++ (Co Rx shared)</td>
</tr>
<tr>
<td>(IM/CO)</td>
<td></td>
<td>Timing: + robust</td>
</tr>
<tr>
<td>Individual FFT</td>
<td></td>
<td>Granularity: +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Groups: NEC, Kiel, Orange</td>
</tr>
<tr>
<td>(2) OFDMA</td>
<td></td>
<td>Cost eff.: +/- (Co Rx shared)</td>
</tr>
<tr>
<td>(IM/CO)</td>
<td></td>
<td>Timing: – sync required</td>
</tr>
<tr>
<td>Common FFT</td>
<td></td>
<td>– common clock</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Granularity: ++ (comb. TDMA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Groups: NEC, Kiel, Technion</td>
</tr>
</tbody>
</table>
Aspects of OFDM in Optical Access Networks

- High Data Rate
- Sync. Aspects
- Field Trial
- Cost Reductions
- Real-Time Experiments
- WDM
- DSP

Downstream + Upstream
OFDMA-US: (1)FDMA
Experiments (NEC, ECOC’09)

OLT:
- Common US-carrier
- Coherent Rx (Dual pol.)
- DSP individual Rx (DFTs)

PON:
- Duplex with 2 fibers
- Optical interleaver

ONU (3):
- DD/IM + el. IQ
- 10 Gbit/s
- Carrier suppression

DSP:
- \(N_{\text{DFT}} \): 800
- SC/ONU: 200/240
- Guard band: 500 MHz

D. Qian et al., ECOC 2009, paper 8.5.1
Aspects of OFDM in Optical Access Networks

Christian-Albrechts-Universität zu Kiel

High Data Rate

Sync. Aspects

Field Trial

Cost Reductions

Real-Time Experiments

WDM

Downstream + Upstream

DSP

Chair for Communications
OFDMA-US: Individual FFT(1) vs. Common FFT(2)

- No carrier frequency offset \(\rightarrow 1-\lambda \)
- Synchronization, timing and clock

![Diagram showing OFDMA-US: Individual FFT(1) vs. Common FFT(2)]

Common DSP

Individual DSP

\(\Delta \tau = 2 \text{ns} \)

\(\tau_1 \rightarrow L_1 \)

\(\tau_2 + \Delta \tau \rightarrow L_2 \)

\(\tau_3 \rightarrow L_3 \)

\(\tau_4 \rightarrow L_4 \)

\(\rightarrow \) Control symbol timing

\(\rightarrow \) Common clock

Subcarrier index

EVM in %

OLT

ONU 1

ONU 2

ONU 3

ONU 4
OFDMA-US:
Experiments (Kiel, OFC’14)

ONUs (Tx):
- Generation of 4 real-valued OFDM signals

PON:
- Distribution fibers different lengths
- **Bidirectional** feeder fiber

OLT (Rx):
- Coherent detection (dual pol.)
 1) DSP with individual FFTs
 2) DSP with common FFT

von Hoyningen-Huene et al., OFC 2014, Tu2F.4.
OFDMA-US: Experiments (Kiel, OFC’14)

Optical Spectra

Graphs and Diagrams:

- X-pol. and Y-pol. spectra showing optical signals across different wavelengths.
- Diagram illustrating the signal flow from TX DSP to DAC, through 25 km of fiber, and to downstream components like VOA, CO RX, ADC, OFDMA Rx DSP, ECL, and OLT.

Text:

- von Hoyningen-Huene et al., OFC 2014, Tu2F.4.
OFDMA-US:
DSP for US Receiver (OLT)

US-DSP:
- ✓ Frame Synchronization
- ✓ Timing Advance
- ✗ FFT-size, CP duration
- ✗ EQ Adaption to polarization diversity receiver
- ✗ PN estimation and compensation

Dual Pol. Co-Rx → ADC → ADC → ADC → ADC

Sync. → S/P → - CP → FFT → EQ (SIMO) → PN-Comp → Demapping → P/S

Common vs. Individual → we have full control over timing.
OFDMA-US: Experiments (Kiel, OFC’14)
Individual FFTs (1)

2.25 Gb/s per ONU
Individual FFT (1)

OFDM-FDMA

Delay wrt. to neighboring ONUs $\Delta t/T_{OFDM}$

von Hoyningen-Huene et al., OFC 2014, Tu2F.4.
2.25 Gb/s per ONU
Common FFT (2)

OFDMA-US: Experiments (Kiel, OFC’14)
Common FFT (2)

Delay of ONU3 $\Delta t/T_{OFDM}$

EVM per SC

Subcarrier index

0
0.1
0.2
0.3
0.4
0.5

0
0.1
0.2
0.3
0.4

-5
-4
-3
-2
-1

ONU 1
ONU 2
ONU 3
ONU 4

FFTW-window

$\exp(-j2\pi f_0 t)$

von Hoyningen-Huene et al., OFC 2014, Tu2F.4.

Chair for Communications
1. Initialization:
Cross-correlation with individual synchronization symbols:

\[\Delta \tau_3 \Delta \tau_4 \Delta \tau_2 \Delta \tau_1 \]

\[\rightarrow \text{Estimation: } \Delta \tau_3 \Delta \tau_4 \Delta \tau_2 \Delta \tau_1 \]

\[\rightarrow \text{timing advance (TA)} \]

C. Ruprecht et al., ACP 2013, AF1G.4
2. Fine tuning and tracking:

One-tap equalizer coefficients:

\[H_{\text{offset}}(f_k) = |H(f_k)| \cdot \exp(j \cdot \phi_k + j \cdot 2\cdot \pi \cdot \tau \cdot f_k) \]
Subcarrier index \(k = 1\ldots196 \)

Linear deviation of phase

\[\rightarrow \text{TA update} \]
OFDMA-US: Synchronization (Kiel, ACP’13)

Tracking Experiment

OLT
- ECL, linewidth 5 kHz

PON:
- Bidirectional distribution fiber
- Amplifier at remote node

Result:
→ Tracked delay change of 29…39 ns
294…392 samples

ONU1..4 @ 10 GS/s
- TS/EQ/Data = 1/1/40
- FFT/CP = 512/8

C. Ruprecht et al., ACP 2013, AF1G.4

Chair for Communications
Aspects of OFDM in Optical Access Networks

Field Trial Experiment

- High Data Rate
- WDM
- Sync. Aspects
- Downstream + Upstream
- DSP
- Field Trial
- Cost Reductions
- Real-Time Experiments
Field Trial: OFDMA-PON (Kiel, OFC’14)

Scenario

• US and DS including 1 OLT and 4 ONUs
• Optical attenuator → emulate 32 ONUs
• 37.5 km field deployed feeder fiber
• DS: 20 Gbit/s (FFT 1024, 8-QAM)
• US: 6.5 Gbit/s (FFT 512, 4-QAM)
Field Trial: OFDMA-PON (Kiel, OFC’14)

Setup

Succesfully realised:
20 Gbit/s DS and 6.5 Gbit/s in US
37.5 km supporting 32 ONUs (Trellis)

Polarization dependent!!
Field Trial: OFDMA-PON (Kiel, OFC’14)
Flexible Subcarrier Allocation

Synchronized US \to orthogonal subcarriers at OLT receiver
Flexible subcarrier allocation possible

OLT: assigns different number of subcarriers (different data rate)
OLT: assigns different subcarriers (same data rate)

\rightarrow Flexible subcarrier allocation (per ONU) possible without penalty

Upstream ONUs:
- **ONU 1:** 2.29 Gbit/s
- **ONU 2:** 0.96 Gbit/s
- **ONU 3:** 1.29 Gbit/s
- **ONU 4:** 1.96 Gbit/s

C. Ruprecht et al., OFC 2014, T3G.5
Field Trial: OFDMA-PON (Kiel, OFC’14)
Flexible Subcarrier Allocation

Synchronized US → orthogonal subcarriers at OLT receiver
Flexible subcarrier allocation possible

![Graph showing EVM and PSD for different subcarrier allocations]

- **Upstream ONUs:**
 - **ONU 1:** 2.29 Gbit/s
 - **ONU 2:** 0.96 Gbit/s
 - **ONU 3:** 1.29 Gbit/s
 - **ONU 4:** 1.96 Gbit/s

→ **Flexible subcarrier allocation (per ONU) possible without penalty**

C. Ruprecht et al., OFC 2014, T3G.5

Chair for Communications
Aspects of OFDM in Optical Access Networks

Further Advances of OFDM in Access

- High Data Rate
- WDM
- Downstream + Upstream
- Sync. Aspects
- Field Trial
- Cost Reductions
- Real-Time Experiments
- DSP
1.2 Tb/s (1 Tb/s after overhead) symmetric WDM-OFDMA-PON

Advances:
- High data rate: 25 x 40 Gb/s
- Long reach: 90 km

Further steps:
- DS and US: bidirectional fiber
- Generation of data at different ONUs
- Less optical amplifiers

N. Cvijetic et al., OFC 2011, PDPD7
Further Advances of OFDM in Access

- High Data Rate
- Sync. Aspects
- Field Trial
- Cost Reductions
- Real-Time Experiments
- WDM + Downstream DSP Upstream
Real-Time Upstream (Bangor, OptExp’12)
First Steps Towards 1-λ

OLT:
• DD
• Remote Laser (1-λ possible)

PON:
• Single fiber: 25 km

ONU:
• REAM
• 1 ONU @ 10Gb/s
• Bidirectional Amplifier

Advances:
• Polarization independent
• Bidirectional
• Colorless

“Further steps”:
• Multiple ONU
• Co-Rx at OLT
• Less amplifier

E. Hugues-Salas al., Optics Express 20(19), 2012
Aspects of OFDM in Optical Access Networks

Further Advances of OFDM in Access

- High Data Rate
- Sync. Aspects
- Field Trial
- Cost Reductions
- Downstream + Upstream
- WDM
- DSP
- Real-Time Experiments
ONU Integration: (Technion, OFC’13)
First Steps OTONES Concept Class I

ONU:
- Colorless
- $1-\lambda$
- Polarization independent mod.
- Photonic integrated circuit
- Low speed ADC/DAC
- Tune into 1 of 10 streams (1Gbit/s)
- 16 QAM

Concept: A. Agmon et al., OFC 2013, OTh3A.6

Bidirectional Modulator: P.C. Schindler et al. ECOC 2014

Chair for Communications
Further Advances of OFDM in Access

- High Data Rate
- WDM
- Sync. Aspects
- Field Trial
- Cost Reductions
- Downstream + Upstream
- DSP
- Real-Time Experiments

Aspects of OFDM in Optical Access Networks
Co-OFDMA-PON (Osaka, ECOC’14, OFC’15)
CFO Compensation

OFDMA US with CFO compensation using feedback from OLT
• 3 kHz linewidth ECL
• 400 ms feedback delay

Advances:
• ONUs with individual sources
• CFO compensation for 100 kHz ECL
• Real-time ONU in US
• MUI cancelation implemented at OLT

Further steps:
• SC spacing 187 MHz → scalability difficult
• Higher data rate
• Larger linewidth ECL used at other ONUs

Y. Yoshida et al., JLT 33(8), 2015,
Summary

• OFDMA for flexible capacity allocation among ONUs

• Downstream direction: “Straight forward”
 Simple optics, real-time DSP, high speed experiments,

• Upstream direction: “Challenging but possible”
 Proof of concept: MA, optical modulation schemes and synchronization
What is still Missing?

• Cost reduction (DAC/ADC, DSP, optics)
• Real-time DSP experiments
 + more ONUs @ high data rate (upstream!)
 + advanced optics
 + bidirectional
 + WDM

Realistic OFDMA-PON experiment
“... put the puzzle together”
What is still missing?

- Cost reduction (DAC/ADC, DSP, optics)
- Real-time DSP experiments
 - more ONUs @ high data rate (upstream!)
 - advanced optics
 - bidirectional
 - WDM

Realistic OFDMA-PON experiment
“... put the puzzle together”
Thank You!

Johannes.vonHoyningen-Huene.de@ieee.org
Christian.Ruprecht@ieee.org

OFDM basics:
• T. Schmidl and D. Cox, “Robust frequency and timing synchronization for OFDM”, Trans. on Comm., vol 45, no. 12 1997
• S. Jansen, OFC Short-Course 2013, Tutorial OFC 2012,

IM/DD OFDM (for example for downstream)
• J. von Hoyningen-Huene et al., ”Experimental IM/DD OFDMA Transmission with Scalable Receiver Frontend for PON Scenarios”, OFC 2012, paper OW4B.6,
• W. Yan et al., 80 km IM-DD Transmission for 100 Gb/s per Lane Enabled by DMT and Nonlinearity Management., OFC 2014, M2I.4

Aspect of OFDM with coherent detection
• S. Randel et al., “Analysis of RF-Pilot-Based Phase Noise Compensation for Coherent Optical OFDM Systems”, PTL, vol 22 no 17, 2010
• S. T. Le, et.al "Experimental Demonstration of Data-dependent Pilot-aided Phase Noise Estimation for CO-OFDM," in OFC 2014, paper Tu3G.4
• Y. Chen et a., ”Power budget improvement for coherent optical-OFDM access upstream transmission using TCM with constellation shaping," ICTON, 2014 “
References

OFDM real-time experiments

- Fred Buchali et al., “Realisation of a real-time 12.1 Gb/s optical OFDM transmitter and its application in a 109 Gb/s transmission system with coherent reception”, ECOC 2009
- D. Qian, et al., “41.25 Gb/s real-time OFDM receiver for variable rate WDM-OFDMA-PON transmission”, OFC2010
- R. P. Giddings et al., “World-first experimental demonstration of synchronous clock recovery in an 11.25Gb/s real-time end-to-end optical OFDM system using directly modulated DFBs”, OFC 2011, paper OMS4

OFDMA-PON aspects

- N. Cvijetic et al., "Terabit Optical Access Networks Based on WDM-OFDMA-PON", JLT 30(4) 2012
- A. Agmon et al., “Bi-directional Ultra-dense Polarization-muxed/diverse OFDM/WDM PON with Laserless Colorless 1Gb/s ONUs Based on Si PICs and <417 MHz mixed-signal ICs”, OFC 2013, OTh3A.6
- K. Kanonakis et al., “Results from the EU Project ACCORDANCE on Converged OFDMA-PON Networks”, ICTON 2013, Tu.D3.3
- N. and M. Cvijetic, “What is Next for DSP-based Optical Access and OFDMA-PON?”, ECOC 2014, We.1.6.1
OFDM Upstream(Multiple Wavelengths):
• D. Qian et al., “Experimental Demonstration of a Novel OFDM-A Based 10Gb/s PON Architecture”, ECOC 2007, paper 5.4.1

OFDM-FDMA Upstream(Single Wavelength):
• D. Qian et al., “100km Long Reach Upstream 36Gb/s-OFDMA-PON over a Single Wavelength with Source-Free ONUs”, ECOC 2009, paper 8.5.1
• B. Charbonnier et al., “Self-Coherent Single Wavelength SC-FDMA PON Uplink for NG-PON2”, OFC 2012, paper OW4B-4
• J. von Hoyningen-Huene, ”Experimental Demonstration of OFDMA-PON Uplink-Transmission with Four Individual ONUs” OFC 2013, paper OTh3A.2
• Kottke et al., ”Coherent SCM-WDM-PON System using OFDM or Single Carrier with SSB Modulation and Wavelength Reuse“, ECOC 2013, paper We.3.F.4

OFDMA Upstream(Single Wavelength):
• C. Ruprecht, et al., Timing Advance Tracking for Coherent OFDMA-PON Upstream System, ACP 2013, paper AF1G.4
• C. Ruprecht, et al., ”37.5-km Urban Field Trial of OFDMA-PON using Colorless ONUs with Dynamic Bandwidth Allocation and TCM”, OFC 2014, paper Th3G.5
• J. von Hoyningen-Huene et al., ”Comparison of Rx-DSP-Structures in Experimental OFDMA-PON Uplink Transmission Systems”, OFC 2014, papers Tu2F.4