High Speed Transmission over MMF and PF-POF using MIMO Approach

Stefan Schöllmann
Motivation

Initial Point: High speed transmission over short distances (< 300m)

Multi Mode Fibre & Plastic Optical Fibre

- Easier handling compared to SMF
 - Bending
 - Connectors
 - Cheaper components

- Short reach at high speed
 - Low bandwidth distance product

Research Topic: Increase of bandwidth distance product

Existing
- Coarse (C)WDM
- Equalization

Alternative
- Mode Group Diversity Multiplexing
Outline

• Motivation
• Introduction
 – Multi Mode Fibre (MMF) and Plastic Optical Fibre (POF)
 – Optical Multi Input Multi Output (MIMO) system
• Experimental Investigations
 – Intensity distributions for different launching positions
 – Mode dispersion
 – Crosstalk
 – Equalization
• Conclusion and outlook
Introduction (1)

MMF and POF

- Large core diameter
 (MMF: 50 – 62,5 μm; POF: 62,5 -1000 μm)
 - Multi mode character
 - Mode dispersion
 - Mode coupling

Impulse Response

\[h(t) = \sum_{m=0}^{M-1} P_m \delta(t - \tau_m) \]

- \(M \) = Number of excited mode groups
- \(P_m \) = Power of mode group \(m \)
- \(\tau_m \) = Time delay of mode group \(m \)

With the effect of mode coupling

\[P_m = \sum_{n=0}^{N-1} \gamma_{n,m} \cdot P_n \]
Introduction (2)

Principle of Mode Group Diversity Multiplexing as MIMO approach

- Multiplexing: Assignment of different signals to different mode groups
- De-Multiplexing: Separation of different mode groups

Transmitter:
- Restricted launching spots
- High order modes
- Low order modes

Receiver:
- High order modes
- Low order modes

Power distribution in MMF/POF

Introduction (2)

Principle of Mode Group Diversity Multiplexing as MIMO approach

- Multiplexing: Assignment of different signals to different mode groups
- De-Multiplexing: Separation of different mode groups

Transmitter:
- Restricted launching spots
- High order modes
- Low order modes

Receiver:
- High order modes
- Low order modes

Power distribution in MMF/POF

S. Schöllmann, 9.1.07
Experimental Setup

![Experimental Setup Diagram]

Mode Mux

- 1540 nm
- 5.35 Gb/s Data
- VOA
- GI-MMF/POF
- Mode Mux
- SMF
- MMF
- OLP

Mode DeMux

- Micro-positioner
- 2x1 Coupler
- SMF
- BER

Experimental Setup Details

- **s_1(t)**
- **s_2(t)**
- **y_1(t)**
- **y_2(t)**
- **h_11**
- **h_12**
- **h_21**
- **h_22**

Fixed MMF/POF

- Moveable MMF
- SMF
- d = 62.5 um
- d = 9 um

S.Schöllmann, 9.1.07
Experimental Results (1)

Intensity distributions for different launching positions on MMF

Centre Launch Position
- Concentration of power in the centre of the core

Offset Launch Position
- Power is distributed over complete core radius (closer to core cladding)
Experimental Results (2)

Intensity distribution after 300 m GI-MMF

CLP, 0 um OLP, 20 um

No significant change for intensity distributions at CLP and OLP
Experimental Results (3)

Demultiplexing of the signals (MMF)

- 1 x 10.7 Gb/s
 - Transmitter
 - MMF’s core
 - Overfilled launch position
 - Receiver
 - MMF’s core
 - Complete detection area

- 2 x 5.35 Gb/s with MGDM

- Completely distorted eye based on mode dispersion
- No error free transmission
- Reduction of mode dispersion,
- Wide open eyes \(\rightarrow\) error free transmission is possible
- Reduced influence of mode dispersion
- Widened one level \(\rightarrow\) higher influence of crosstalk

S. Schöllmann, 9.1.07
Experimental Results (4)

Performance analysis: MGDM with different power levels for $s_1(t)$ and $s_2(t)$

Equal power levels

- Strong mode coupling from low order modes to high order modes for equal power levels
- **Equalization**

Unequal power levels

- **Significant reduction for increasing** $\Delta P = P_2 - P_1$

$\Delta P_{dB} = (P_2 - P_1)_{dB}$
Experimental Results (5)

Intensity distributions after 10m GI-POF

CLP

OLP, 20 um

No significant change in intensity distributions for CLP and OLP
Experimental Results (6)

Demultiplexing of the signals (POF)

- Wide open eye for CDP
 - low influence of mode dispersion
 - low interference from second channel

- Wide open eye for ODP
 - more distorted due to
 - Mode dispersion
 - High crosstalk from second signal
Revised Experimental Setup

Influence of slight variations at CLP

- Only Centre Launch Position is varying
 - Realized with a second micropositioner
 - Variation from 0 um to 6 um offset
 - Crosstalk is measured by BER measurements in the second channel
Experimental Results (7)

Influence of slight variations at CLP

- 0 um to 3 um offset
 - no significant performance change
- 4 um and 5 um offset
 - significant performance reduction to a BER of 10^{-4}
- 6 um offset
 - BER of 3×10^{-3} → Correction by standard FEC is not possible
 - Equalization
Equalization

Reduction of crosstalk by zero forcing in a 2 x 2 MIMO system

\[y_1(t) = h_{11} \cdot x_1(t) + h_{21} \cdot x_2(t) \]
\[y_2(t) = h_{12} \cdot x_1(t) + h_{22} \cdot x_2(t) \]

- Until now: Assumption \(h_{12} = 0 \) und \(h_{21} = 0 \)

New approach:

Determination of transmission coefficients \(h_{11}, h_{12}, h_{21} \) and \(h_{22} \)

\[
x_1(t) = \frac{y_1 \cdot h_{22} - y_2 \cdot h_{21}}{h_{11} \cdot h_{22} - h_{12} \cdot h_{21}}
\]
\[
x_2(t) = \frac{y_1 \cdot h_{12} - y_2 \cdot h_{11}}{h_{12} \cdot h_{21} - h_{22} \cdot h_{11}}
\]
Experimental Equalization Setup

Two MMF detection points

- Two detection points with different power influence of the signals (Distance: 10 um)
- Determination of the transmission coefficients \(h_{11}, h_{12}, h_{21}, h_{22} \)
- Sampling the bit sequences with the oscilloscope at both points \((y_1 \text{ and } y_2) \)
- Offline equalization
Experimental Results (8)

Two MMF detection points

Detection Point 1

Detection Point 2

- Both eye diagrams show four different power levels (00, 01, 10, 11)
- Completely distorted eye due to crosstalk
Experimental Results (9)

Determination of transmission coefficients

Detection point 1

- Determination of the transmission coefficients by detecting only one signal
- Only power influence is measured

Influence of signal 1

\[h_{11} \]

Influence of signal 2

\[h_{21} \]
Experimental Results (10)

Without equalization

With equalization

Successful equalization of crosstalk
Conclusion & Outlook

- Experimental investigations of MIMO approach using MMF/POF
- Experimental realization of a 2 x 2 MIMO setup based on MGDM
 - Reduction of the mode dispersion influence
 - Investigation of crosstalk between the channels
 - Dependant on the power levels in the channels
 - Dependant on the exact launching positions
 - Successful equalization of crosstalk by zero forcing method
- Investigation of modal noise in optical MIMO systems