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Why Adaptive Distortion Compensation?

= Reconfigurable optical networks need adaptive equalization to
follow the dynamic changes of the transmission channel:

= chromatic dispersion

+ different routes through the network

+ temperature variations
= nhonlinear effects

+ signal distortions dependent on dispersion and signal power

= PMD

+ birefringence and mode coupling variations
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Enabling Technology = 10 Gb/s

mbo, page 3



SIEMENS

———

Adaptive Distortion Compensation ST

University of Kiel

m existing concepts

m electrical equalization by intersymbol interference minimization with Finite

Impulse Response (FIR)-Filters, Decision Feedback Equalizer (DFE), Viterbi
Equalizer

problem: envelope demodulation in the photo diode (PD)

= optical compensation by inverse system modeling with e.g. DCF, CFBG,
cascaded Mach-Zehnder Interferometers (MZI), Ring Resonators (RR),
Etalons, VIPA

but: compensation of only a single fiber impairment
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Adaptive Distortion Compensation

= adaptive equalizer in the optical domain
+ equalization before the PD, phase information available
+ variable complex tap weights (el. filter: only real tap weights)

+ maximization of the electrical eye opening by controling the tap

weights of the optical filter with an adaptive algorithm

simulation setup:

____________________________________________________

RX | opt. filter

adaptive control
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combined optical equalization of
single channel distortions
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m transversal structure
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difficult to realize as optical filter

(o) (o) (o] e (o) W e with variable complex tap

coefficients

m lattice structure

delay line

phase shift
coupler

cascaded Mach-Zehnder Interferometers
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m lattice structure
X(m) delay line phase shift
T,

cascaded Mach-Zehnder Interferometers

complex tap weights by changing the coupling and phase ratio
the frequency response is periodic: FSR=1/T 4

= combined equalization of several channels
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FIR - Filter Structure

lattice structure
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FIR - Filter Structure

lattice structure
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40Gb/s Results - GVD

m dispersion tolerance (1dB reference)
= W/0 equalizer: D =+ 60 ps/nm

= with equalizer: D =+ 200 ps/nm

= arbitrary accurate equalization with

increasing filter order

s equalizing performance = f(FSR)
m increasing distortion = increasing pulse
broadening
= increasing FSR = decreasing T, = shorter
impulse response

m increasing pulse broadening & shorter impulse

response = decreasing equalization

eye opening penalty (dB)
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40Gb/s Results - SPM

dispersion tolerance @ 9dBm

= W/0 equalizer: D=0ps/nm
= with equalizer: D =-100 ... +200 ps/nm

B
= W/0 equalizer:

= Wwith equalizer:

SPM equalization (1dB reference)

I:)Iaunch =9dBm
Plaunch = 12 dBm

= SPM equalizing gain: 3 dB

eye opening penalty (dB)
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= Adaptive Equalization:

= equalization with a single filter:

l) pore g g
both orthogonal modes will be equalized with the same :
transfer function _» ; ~_>

= slight improvement, eye cosmetcs ¢

= equalization with 2 transfer functions:

by including a polarization beam splitter (PBS) both

orthogonal modes see a different transfer function :

single filter setup
o excellent improvement 2b) ...................... %_
£ max DGDygmp=n-T, 000 - N
: _ & —

double filter setup
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= Simulated fiber span:

double filter setup single filter setup
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group delay ripple (ps)
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Ripple Spectrum

ripple amplitude (ps)

20 40 60 80 100 120
frip (THz)

Impulse Response

amplitude

o
~

o
N
o
L o
L o
1

1.

9 0
150 -100 50 0 50 100 150
time (ps)

mbo, page 15



m equalization schemes

optical inline compensation by modeling the
inverse system

CFBG + Filter = Ripple Free Device

post equalization with an adaptive optical filter

ripple mitigated tunable dispersion
compensation with fixed DCFBGs

GDR Equalization Schemes
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equalization of group delay ripple @
10dBm, 2spans, n=10

equalization of group delay ripple only
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Summary

adaptive equalizer concept.

= excellent dispersion tolerance improvement for linear and nonlinear

transmission
= excellent SPM equalization
s PMD equalization of 1st and higher order

= group delay ripple compensation
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combined optical mitigation of
all single channel distortions
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